Antiferromagnetic complexes with the metal-metal bond

XVI *. Synthesis and molecular structure of binuclear dihalogenide cyclopentadienyl-t-butylate chromium(III) complexes

S.E. Nefedov, A.A. Pasynskii ${ }^{\star}$, I.L. Eremenko, B. Orazsakhatov, O.G. Ellert, V.M. Novotortsev, S.B. Katser, A.S. Antsyshkina and M.A. Porai-Koshits
N.S. Kurnakov Institute of General and Inorganic Chemistry of the Academy of Sciences of the USSR, Lenin Avenue, 31, Moscow V. 71 (U.S.S.R.)

(Received October 12th, 1987)

Abstract

Reactions of $(\mathrm{CpCrOR})_{2}(\mathrm{I})\left(\mathrm{R}=\mathrm{CMe}_{3}\right)$ with $\mathrm{CH}_{2} \mathrm{X}_{2}$ in toluene and benzene at room temperature yield the binuclear complexes $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mu-\mathrm{OR})_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}$ (II); Br (III); I (IV)) with the X ligands in the cis-position with respect to the $\mathrm{CpCr}-\mathrm{CrCp}$ moiety. The X-ray structural study of complexes II-IV showed that the $\mathrm{Cr}-\mathrm{X}$ distances (2.28(1), 2.29(1); 2.478(2); 2.716(2), 2.711(2) \AA in II-IV) are markedly shortened compared with the sums of the corresponding covalent radii, owing to additional $\mathrm{X}-\mathrm{Cr} \pi$-bonding which involves the half-filled orbitals of the Cr atoms. This shortening is accompanied by the elongation of the $\mathrm{Cr}-\mathrm{Cr}$ bonds from $2.635 \AA$ in I up to 2.917(7), 2.971(2) and 2.967(2) \AA in II-IV and the weakening of the antiferromagnetic exchange interactions ($-2 J=150,168$ and $148 \mathrm{~cm}^{-1}$ for II-IV respectively as compared with $-2 J=246 \mathrm{~cm}^{-1}$ for I). The similarity between the ligand environment of the chromium atom in I and the vanadium atom in $\mathrm{Cp}_{2} \mathrm{~V}$ is described.

Introduction

The binuclear complex $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mu-\mathrm{OR})_{2}$ (I) $\left(\mathrm{Cp}=\mathrm{C}_{5} \mathrm{H}_{5}\right.$ and $\left.\mathrm{R}=\mathrm{CMe}_{3}\right)$ obtained from the reaction of $\mathrm{Cp}_{2} \mathrm{Cr}$ with t -butyl alcohol [1], is a convenient example to use for finding out how the geometry, electronic structure and magnetic properties correlate. From the results of an X-ray diffraction study it was found that the two

[^0]$\mathrm{Cr}^{\mathrm{II}}$ atoms with d^{4} electron configuration in molecule I are bonded directly $(\mathrm{Cr}-\mathrm{Cr}$ $2.635 \AA$), and via two bridging $\mu-\mathrm{OCMe}_{3}$ ligands, to each other. The $\mathrm{Cr}_{2} \mathrm{O}_{2}$ group has a butterfly configuration, the dihedral angle formed by its wings being 128.1°. Each of the Cr atoms is coordinated by the $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand, the $\mathrm{Cr}-\mathrm{Cp}$ (centroid) distances being 1.975 and $2.005 \AA$, and the Cp (centroid) CrCr angles 143.9 and 146.3°, respectively. It is noteworthy that the antiferromagnetic properties of I ($\mu_{\text {eff }}$ in solution decreases with temperature from 1.88 BM at 333.5 K to 1.49 BM at 214 K [1]) are consistent with the dimeric Heisenberg-Dirac-Van Vleck (HDVV) model [2] having an exchange parameter of $-2 J=246 \mathrm{~cm}^{-1}$ and the spin of each $\mathrm{Cr}^{\mathrm{II}}$ ion equal to 2 [3]. It means that each $\mathrm{Cr}^{\mathrm{II}}$ atom, that participates in the direct single $\mathrm{Cr}-\mathrm{Cr}$ bond still has three half-occupied orbitals.

If the molecule is cut by a plane passing through the mid-points of the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{Cr}$ bonds (see Scheme 1), it can be seen that the geometry of the ligands about each Cr^{11} atom resembles that of bis-cyclopentadienyl sandwich complexes. Let us regard the complex as a combination of CpCr^{2+} (isoelectronic to CpV^{+}) and $\mathrm{CpCr}(\mathrm{OR})_{2}{ }^{2-}$ moieties. The latter, a three-orbital quasi-ligand, very like the cyclopentadienyl anion, would donate the six electrons to chromium atom (two electrons from each oxygen atom and an electron pair from the $\mathrm{Cr}-\mathrm{Cr}$ bond). In this case each chromium atom of I is analogous to the V atom in vanadocene $\mathrm{Cp}_{2} \mathrm{~V}$. The latter is known to be paramagnetic, since it contains three unpaired electrons and can add π-accepting ligands ($\mathrm{CO}, \mathrm{CF}_{3} \mathrm{C}_{\mathrm{E}}=\mathrm{CCF}_{3}$) and halogen atoms ($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ and I), to give $\mathrm{Cp}_{2} \mathrm{~V}(\mathrm{CO}), \mathrm{CpV}(\mathrm{CO})_{2}{ }^{+}, \mathrm{Cp}_{2} \mathrm{~V}\left(\mathrm{CF}_{3} \mathrm{C}=\mathrm{CCF}_{3}\right)$ and $\mathrm{Cp}_{2} \mathrm{VX}$ complexes, respectively [4]. Indeed the formation of the adducts $\left[(\mathrm{CpCrOR})(\mathrm{CO})_{2}\right]_{2}$ and $(\mathrm{CpCrOR})_{2}\left(\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}\right)$ by the reaction of $(\mathrm{CpCrOR})_{2}$ with CO and $\mathrm{CF}_{3} \mathrm{C}=\mathrm{CCF}_{3}$, respectively has been reported previously [1].

These considerations justify our attempt to carry out the addition of halogen atom X to $(\mathrm{CpCrOR})_{2}$ by reaction with $\mathrm{CH}_{2} \mathrm{X}_{2}$ in mild conditions, by analogy with $\mathrm{Cp}_{2} \mathrm{~V}$.

Results and discussion

The oxidative addition of $\mathrm{CH}_{2} \mathrm{X}_{2}$ to I in toluene/benzene at room temperature led to the formation of the binuclear complexes $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, I) in yields of 68,67 and 58%, respectively (Scheme 1).

$22^{\circ} \mathrm{C}$

$(X=C l(I I), B r(I I I), I(I V))$

Scheme 1
Complexes II-IV were isolated as light-blue, blue-green and green crystals, respectively. The IR spectra of the complexes resemble each other closely and contain the bands characteristic of $\mathrm{C}_{5} \mathrm{H}_{5}\left(815,1005,1355\right.$ and $\left.3130 \mathrm{~cm}^{-1}\right)$ and CMe_{3} groups ($1160,2900-3000 \mathrm{~cm}^{-1}$).

The X-ray diffraction study of II-IV (Tables 1-10, Fig. 1) has shown that the addition of two halogen atoms occurs in cis-position with respect to the $\mathrm{CpCr}-\mathrm{CrCp}$

Table 1
Crystal data for complexes II, III and IV

	II	III	IV
Crystal system	trigonal	rhombic	monoclinic
Space group	$P 3_{1} 21$	$P c c n$	$P 2_{1} / n$
$a(\AA)$	$14.608(3)$	$13.271(2)$	$9.864(3)$
$b(\AA)$	$14.608(3)$	$13.879(3)$	$16.797(5)$
$c(\AA)$	$19.444(3)$	$14.266(2)$	$13.602(4)$
$\alpha\left({ }^{\circ}\right)$	90	90	90
$\beta\left({ }^{\circ}\right)$	90	90	$102.16(2)$
$\gamma\left({ }^{\circ}\right)$	120	90	90
Z	6	4	4
$V(\AA)^{3}$	$3593(1)$	$2627.6(8)$	$2203(1)$

moiety and is accompanied by a substantial decrease in the Cp (centroid) CrCr angle (average values are $126.6,131.6$ and 131.7° for II-IV respectively) compared with 145° (average) for I . This difference is analogous to the change of the Cp (centroid) VCp (centroid) angle from 180° in $\mathrm{Cp}_{2} \mathrm{~V}$ to 139.5° in $\mathrm{Cp}_{2} \mathrm{VCl}$ [5].

The $\mathrm{Cr}-\mathrm{X}$ bond lengths increase in the series $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}(2.29(1)$ and 2.28(1) in II, 2.478(2) and 2.478(2) in III, 2.716(2) and 2.711(2) \AA in IV) owing to an increase

Table 2
Atomic coordinates $\left(\times 10^{3}\right)$ (for Cr and $\mathrm{Cl}, \times 10^{4}$) and isotropic temperature factors $\left(\times 10^{3}\right)\left(\AA^{2}\right)$ (anisotropic for Cr and Cl) for $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{Cl}_{2}$ (II)

Atom	x	y	z	U_{11} / U_{i}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Cr}(1)$	111(5)	4705(6)	3675(2)	35(4)	83(5)	35(3)	-16(3)	-9(3)	19(4)
$\mathrm{Cr}(2)$	9564(4)	5328(5)	4968(2)	33(4)	59(5)	37(3)	-3(3)	11(3)	18(3)
$\mathrm{Cl}(1)$	1848(8)	5658(10)	3352(5)	46(7)	130(12)	73(7)	8(8)	21(6)	15(3)
$\mathrm{Cl}(2)$	907(10)	6693(10)	5552(5)	85(10)	96(9)	64(6)	-37(4)	-22(7)	24(9)
$\mathrm{O}(1)$	28(2)	456(2)	467(1)	41(6)					
O(2)	989(2)	583(2)	401(1)	39(6)					
C(1)	89(3)	424(3)	506(2)	59(11)					
C(2)	88(4)	335(4)	468(2)	109(18)					
C(3)	43(3)	387(3)	579(2)	79(13)					
C(4)	$211(5)$	520(5)	505(3)	119(19)					
C(5)	11(3)	682(3)	369(2)	67(12)					
C(6)	6(3)	671(4)	291(2)	82(14)					
C(7)	126(4)	762(4)	389(2)	88(13)					
C(8)	-64(4)	710(4)	396(2)	102(16)					
C(10)	919(3)	427(3)	264(2)	66(11)					
C(11)	983(3)	383(3)	270(2)	66(12)					
C(12)	958(4)	312(5)	321(3)	111(19)					
C(13)	866(4)	321(4)	355(2)	76(13)					
C(14)	849(4)	380(4)	313(2)	91(15)					
C(20)	835(4)	419(4)	580(2)	83(14)					
C(21)	856(4)	521(4)	589(2)	80(14)					
C(22)	817(4)	545(4)	535(2)	85(14)					
C(23)	776(3)	462(3)	484(2)	59(11)					
C(24)	790(3)	383(3)	517(2)	70(12)					

Table 3
Atomic coordinates $\left(\times 10^{4}\right)$ and anisotropic temperature factors ($\times 10^{3}$, and $\times 10^{4}$ for Cr and Br$)\left(\AA^{2}\right)$ for $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{Br}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ (III)

$\mathrm{Atom} x$	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	
$\mathrm{Cr}(1)$	$3329(1)$	$3218(1)$	$3590(1)$	$428(12)$	$345(10)$	$274(8)$	$-20(9)$	$-23(10)$	$-26(11)$
$\mathrm{Br}(1)$	$3826(1)$	$3693(1)$	$1980(1)$	$674(9)$	$544(7)$	$321(5)$	$28(7)$	$47(7)$	$-99(9)$
$\mathrm{O}(1)$	$1861(5)$	$3178(5)$	$3405(4)$	$37(5)$	$31(4)$	$31(4)$	$4(4)$	$1(4)$	$-2(4)$
$\mathrm{C}(1)$	$1091(9)$	$3963(7)$	$3258(7)$	$48(8)$	$40(8)$	$40(7)$	$0(5)$	$2(6)$	$27(7)$
$\mathrm{C}(2)$	$228(8)$	$3566(8)$	$2662(7)$	$33(8)$	$44(8)$	$71(8)$	$-3(7)$	$-27(7)$	$4(7)$
$\mathrm{C}(3)$	$1615(9)$	$4808(7)$	$2746(8)$	$67(10)$	$24(7)$	$91(10)$	$28(6)$	$5(8)$	$5(7)$
$\mathrm{C}(4)$	$717(10)$	$4301(9)$	$4239(7)$	$107(12)$	$75(10)$	$32(7)$	$-13(7)$	$9(8)$	$58(9)$
$\mathrm{C}(10)$	$3267(12)$	$3900(23)$	$5023(12)$	$54(11)$	$178(22)$	$45(10)$	$-65(12)$	$11(9)$	$-24(14)$
$\mathrm{C}(11)$	$3965(23)$	$3111(12)$	$5043(11)$	$187(22)$	$59(12)$	$32(8)$	$9(8)$	$-61(12)$	$-59(14)$
$\mathrm{C}(12)$	$4780(13)$	$3368(17)$	$4430(15)$	$63(13)$	$99(15)$	$79(13)$	$-51(11)$	$-51(11)$	$8(12)$
$\mathrm{C}(13)$	$4561(18)$	$4249(19)$	$4086(9)$	$99(17)$	$117(17)$	$35(8)$	$-4(11)$	$-25(10)$	$-64(14)$
$\mathrm{C}(14)$	$3648(19)$	$4568(11)$	$4416(15)$	$99(18)$	$69(12)$	$84(13)$	$-44(11)$	$-62(12)$	$8(13)$
$\mathrm{C}(30)$	$-2313(14)$	$2989(12)$	$3538(16)$	$49(14)$	$99(18)$	$267(25)$	$24(15)$	$22(18)$	$26(14)$
$\mathrm{C}(31)$	$-2121(18)$	$3382(18)$	$4396(19)$	$75(16)$	$114(22)$	$253(35)$	$-88(23)$	$-15(23)$	$19(13)$
$\mathrm{C}(32)$	$-2244(28)$	$2994(19)$	$5260(16)$	$211(38)$	$188(36)$	$223(25)$	$-51(21)$	$1(30)$	$125(34)$

in the covalent radii of the halogen atoms. At the same time their bonds are shortened relative to the sums of the covalent radii of $\operatorname{Cr}(1.46 \AA$ in the cyclopentadienyl complexes [6]) and corresponding X atoms ($0.99,1.14$ and $1.33 \AA$ for Cl, Br

Table 4
Atomic coordinates ($\times 10^{4}$) and anisotropic temperature factors ($\times 10^{3}$, and $\times 10^{4}$ for Cr and I) (\AA^{2}) for $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{I}_{2}$ (IV)

Atom	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Cr}(1)$	$999(2)$	$1837(1)$	$6178(1)$	$305(8)$	$294(8)$	$293(8)$	$-23(6)$	$32(6)$	$63(7)$
$\mathrm{Cr}(2)$	$-521(2)$	$3087(1)$	$7048(1)$	$363(9)$	$316(8)$	$276(8)$	$-45(6)$	$93(7)$	$15(7)$
$\mathrm{I}(1)$	$-70(1)$	$1557(1)$	$4200(1)$	$487(4)$	$503(4)$	$335(3)$	$-62(3)$	$21(3)$	$-22(4)$
$\mathrm{I}(2)$	$-2641(1)$	$3699(1)$	$5655(1)$	$466(4)$	$540(5)$	$514(5)$	$12(4)$	$-5(4)$	$98(4)$
$\mathrm{O}(1)$	$903(7)$	$3018(4)$	$6221(5)$	$38(4)$	$30(4)$	$33(3)$	$-4(3)$	$13(3)$	$0(3)$
$\mathrm{O}(2)$	$-733(7)$	$1947(4)$	$6684(5)$	$33(4)$	$30(4)$	$44(4)$	$0(3)$	$10(3)$	$-5(3)$
$\mathrm{C}(1)$	$1550(12)$	$3644(7)$	$5718(8)$	$60(7)$	$36(6)$	$44(6)$	$8(5)$	$21(5)$	$-11(5)$
$\mathrm{C}(2)$	$1265(20)$	$4457(8)$	$6111(12)$	$155(17)$	$36(7)$	$81(11)$	$-7(7)$	$55(11)$	$-15(9)$
$\mathrm{C}(3)$	$881(19)$	$3638(8)$	$4593(9)$	$152(16)$	$52(8)$	$36(6)$	$15(6)$	$21(8)$	$-22(9)$
$\mathrm{C}(4)$	$3114(15)$	$3491(12)$	$5908(18)$	$42(8)$	$130(17)$	$216(23)$	$109(17)$	$46(11)$	$13(10)$
$\mathrm{C}(5)$	$-1735(13)$	$1353(6)$	$6883(8)$	$69(8)$	$33(6)$	$37(6)$	$2(5)$	$13(5)$	$-5(6)$
$\mathrm{C}(6)$	$-1952(14)$	$731(7)$	$6023(10)$	$74(9)$	$39(7)$	$63(8)$	$-10(6)$	$19(7)$	$-28(6)$
$\mathrm{C}(7)$	$-3122(14)$	$1758(9)$	$6866(13)$	$48(8)$	$67(9)$	$111(12)$	$-5(9)$	$40(8)$	$-13(7)$
$\mathrm{C}(8)$	$-1152(16)$	$940(9)$	$7899(10)$	$96(11)$	$65(9)$	$47(7)$	$28(7)$	$14(7)$	$-6(8)$
$\mathrm{C}(10)$	$3152(13)$	$1778(8)$	$7158(10)$	$45(7)$	$57(8)$	$64(8)$	$1(7)$	$-14(6)$	$46(6)$
$\mathrm{C}(11)$	$3194(14)$	$1474(10)$	$6193(11)$	$44(7)$	$99(13)$	$72(9)$	$-7(9)$	$-6(7)$	$13(8)$
$\mathrm{C}(12)$	$2370(18)$	$774(11)$	$6036(12)$	$79(11)$	$87(12)$	$70(10)$	$-31(9)$	$-20(9)$	$55(10)$
$\mathrm{C}(13)$	$1801(16)$	$655(8)$	$6856(14)$	$74(10)$	$33(7)$	$111(13)$	$10(8)$	$-26(10)$	$32(7)$
$\mathrm{C}(14)$	$2263(14)$	$1270(10)$	$7566(10)$	$58(9)$	$80(10)$	$59(8)$	$12(8)$	$-10(7)$	$43(8)$
$\mathrm{C}(20)$	$-1433(14)$	$3722(10)$	$8217(10)$	$63(8)$	$89(11)$	$54(8)$	$-14(8)$	$29(7)$	$-8(8)$
$\mathrm{C}(21)$	$-315(14)$	$4184(8)$	$8037(9)$	$63(8)$	$61(8)$	$47(7)$	$-27(6)$	$13(6)$	$-2(7)$
$\mathrm{C}(22)$	$897(13)$	$3736(9)$	$8336(9)$	$46(7)$	$75(9)$	$46(7)$	$-29(7)$	$-6(6)$	$7(7)$
$\mathrm{C}(23)$	$549(19)$	$2985(9)$	$8691(8)$	$129(14)$	$63(10)$	$22(6)$	$-5(6)$	$6(7)$	$28(9)$
$\mathrm{C}(24)$	$-969(20)$	$3003(10)$	$8624(10)$	$119(14)$	$73(11)$	$37(7)$	$-25(7)$	$32(8)$	$-16(10)$

Table 5
Bond lengths (\AA) for $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{Cl}_{2}$ (II)

$\mathrm{Cr}(1)-\mathrm{Cr}(2)$	$2.917(7)$	$\mathrm{Cr}(2)-\mathrm{O}(2)$	$1.97(2)$
$\mathrm{Cr}(1)-\mathrm{Cl}(1)$	$2.29(1)$	$\mathrm{Cr}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{av})$.	$2.28(6)$
$\mathrm{Cr}(2)-\mathrm{Cl}(2)$	$2.28(1)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1.42(4)$
$\mathrm{Cr}(1)-\mathrm{O}(1)$	$1.97(2)$	$\mathrm{O}(2)-\mathrm{C}(5)$	$1.46(4)$
$\mathrm{Cr}(1)-\mathrm{O}(2)$	$1.94(2)$	$\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)(\mathrm{av})$.	$1.53(6)$
$\mathrm{Cr}(2)-\mathrm{O}(1)$	$1.96(2)$	$\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{av})$.	$1.38(6)$

Table 6
Bond angles (${ }^{\circ}$) for $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{Cl}_{2}$ (II)

$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{Cl}(1)$	$116.1(4)$	$\mathrm{O}(1) \mathrm{Cr}(2) \mathrm{O}(2)$	$80.3(9)$
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{O}(1)$	$42.0(6)$	$\mathrm{Cr}(1) \mathrm{O}(1) \mathrm{Cr}(2)$	$95.8(9)$
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{O}(2)$	$42.0(6)$	$\mathrm{Cr}(1) \mathrm{O}(1) \mathrm{C}(1)$	$134(2)$
$\mathrm{Cl}(1) \mathrm{Cr}(1) \mathrm{O}(1)$	$100.1(8)$	$\mathrm{Cr}(2) \mathrm{O}(1) \mathrm{C}(1)$	$129(2)$
$\mathrm{Cl}(1) \mathrm{Cr}(1) \mathrm{O}(2)$	$100.4(7)$	$\mathrm{Cr}(1) \mathrm{O}(2) \mathrm{Cr}(2)$	$97(1)$
$\mathrm{O}(1) \mathrm{Cr}(1) \mathrm{O}(2)$	$80.9(8)$	$\mathrm{Cr}(1) \mathrm{O}(2) \mathrm{C}(5)$	$131(2)$
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{Cl}(2)$	$116.9(4)$	$\mathrm{Cr}(2) \mathrm{O}(2) \mathrm{C}(5)$	$132(2)$
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{O}(1)$	$42.2(6)$	$\mathrm{OCC}(\mathrm{av})$.	$109(3)$
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{O}(2)$	$41.2(7)$	$\mathrm{CCC}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)(\mathrm{av})$.	$110(4)$
$\mathrm{Cl}(2) \mathrm{Cr}(2) \mathrm{O}(1)$	$100.3(8)$	$\mathrm{CCC}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{av})$.	$108(5)$
$\mathrm{Cl}(2) \mathrm{Cr}(2) \mathrm{O}(2)$	$101.6(7)$		

Table 7
Bond lengths $\left(\AA\right.$) for $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}\left(\mu \text { - } \mathrm{OCMe}_{3}\right)_{2} \mathrm{Br}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ (III)

$\mathrm{Cr}(1)-\mathrm{C}(2)$	$2.971(3)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1.51(1)$
$\mathrm{Cr}(1)-\mathrm{Br}(1)$	$2.478(2)$	$\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)(\mathrm{av})$.	$1.54(1)$
$\mathrm{Cr}(1)-\mathrm{O}(1)$	$1.968(6)$	$\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{av})$.	$1.39(2)$
$\mathrm{Cr}(1)-\mathrm{O}(2)$	$1.973(6)$	$\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)($ av. $)$	$1.39(3)$
$\mathrm{Cr}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)($ av. $)$			

Table 8
Bond angles $\left({ }^{\circ}\right)$ for $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{Br}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ (II)

$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{Be}(1)$	$112.0(1)$	$\mathrm{Cr}(1) \mathrm{O}(1) \mathrm{C}(1)$	$132.1(6)$
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{O}(1)$	$41.1(2)$	$\mathrm{Cr}(2) \mathrm{O}(1) \mathrm{C}(1)$	$129.9(6)$
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{O}(2)$	$41.0(2)$	$\mathrm{OCC}(\mathrm{av})$.	$108.3(9)$
$\mathrm{Br}(1) \mathrm{Cr}(1) \mathrm{O}(1)$	$98.4(2)$	$\mathrm{CCC}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)(\mathrm{av})$.	$111(1)$
$\mathrm{Br}(1) \mathrm{Cr}(1) \mathrm{O}(2)$	$99.8(2)$	$\mathrm{CCC}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{av})$.	$108(2)$
$\mathrm{O}(1) \mathrm{Cr}(1) \mathrm{O}(2)$	$80.1(4)$	$\mathrm{CCC}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{av})$.	$120(3)$
$\mathrm{Cr}(1) \mathrm{O}(1) \mathrm{Cr}(2)$	$97.8(4)$		

Table 9
Bond lengths (\AA) for $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}\left(\mu \text { - } \mathrm{OCMe}_{3}\right)_{2} \mathrm{I}_{2}$ (IV)

$\mathrm{Cr}(1)-\mathrm{Cr}(2)$	$2.967(2)$	$\mathrm{Cr}(2)-\mathrm{O}(2)$	$1.977(7)$
$\mathrm{Cr}(1)-\mathrm{I}(1)$	$2.716(2)$	$\mathrm{Cr}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{av})$.	$2.26(1)$
$\mathrm{Cr}(2)-\mathrm{I}(2)$	$2.711(2)$	$\mathrm{O}(1)-\mathrm{C}(1)$	$1.47(1)$
$\mathrm{Cr}(1)-\mathrm{O}(1)$	$1.987(7)$	$\mathrm{O}(2)-\mathrm{C}(50$	$1.47(1)$
$\mathrm{Cr}(1)-\mathrm{O}(2)$	$1.980(7)$	$\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)(\mathrm{av})$.	$1.53(2)$
$\mathrm{Cr}(2)-\mathrm{O}(1)$	$1.979(7)$	$\mathrm{C}-\mathrm{C}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)($ av. $)$	$1.41(2)$

Table 10
Bond angles $\left({ }^{\circ}\right)$ for $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cr}_{2}\left(\mu \text { - } \mathrm{OCMe}_{3}\right)_{2} \mathrm{I}_{2}$ (IV)

$\mathrm{Cr}(1) \mathrm{Cr}(1) \mathrm{I}(1)$	$113.2(1)$	$\mathrm{Or}(1) \mathrm{Cr}(2) \mathrm{O}(2)$	$81.4(3)$
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{O}(1)$	$41.5(2)$	$\mathrm{Cr}(1) \mathrm{O}(1) \mathrm{Cr}(2)$	$96.8(3)$
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{O}(2)$	$41.4(2)$	$\mathrm{Cr}(1) \mathrm{O}(1) \mathrm{C}(1)$	$132.2(6)$
$\mathrm{I}(1) \mathrm{Cr}(1) \mathrm{O}(1)$	$101.0(2)$	$\mathrm{Cr}(2) \mathrm{O}(1) \mathrm{C}(1)$	$130.7(6)$
$\mathrm{I}(1) \mathrm{Cr}(1) \mathrm{O}(2)$	$100.2(2)$	$\mathrm{Cr}(1) \mathrm{O}(2) \mathrm{Cr}(2)$	$97.1(3)$
$\mathrm{O}(1) \mathrm{Cr}(1) \mathrm{O}(2)$	$81.2(3)$	$\mathrm{Cr}(1) \mathrm{O}(2) \mathrm{C}(5)$	$131.6(6)$
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{I}(2)$	$111.7(1)$	$\mathrm{Cr}(2) \mathrm{O}(2) \mathrm{C}(5)$	$130.6(6)$
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{O}(1)$	$41.7(2)$	$\mathrm{OCC}(\mathrm{av})$.	$109(1)$
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{O}(2)$	$41.5(2)$	$\mathrm{CCC}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)(\mathrm{av})$.	$110(1)$
$\mathrm{I}(2) \mathrm{Cr}(2) \mathrm{O}(1)$	$99.2(2)$	$\mathrm{CCC}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{av})$.	$108(2)$
$\mathrm{I}(2) \mathrm{Cr}(2) \mathrm{O}(2)$	$99.6(2)$		

and I respectively [7]), which is apparently the result of additional π-bonding due to the lone electron pairs of the terminal X atoms and the half-occupied orbitals of the Cr atom. An analogous situation is observed in the case of $\mathrm{Cp}_{2} \mathrm{VCl}$ where the bond length $\mathrm{V}-\mathrm{Cl}(2.39 \AA)$ [5] is shortened by $0.09 \AA$ as compared with the sum of the covalent radii of V and $\mathrm{Cl}(2.48 \AA)$.

The bridging OR groups are disposed symmetrically over and below the plane passing through the centroids of the Cp rings, the Cr and the X atoms. The dihedral angle between the $\mathrm{Cr}_{2} \mathrm{O}$ wings in $\mathrm{Cr}_{2} \mathrm{O}_{2}$ butterfly increases markedly in II-IV (151.3 or 156.4 and to 158.9°, respectively) compared with 128.1° in I. This increase in dihedral angle is evidently caused by the repulsion between the O and X atoms (the

Fig. 1. The molecular structure of the complexes $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{X}_{2}$.

XCrCr bond angles are $116.5,112.0$ and 112.5° in II-IV, respectively). At the same time the $\mathrm{Cr}-\mathrm{O}$ bonds in II-IV (average lengths $1.964,1.970,1.977 \AA$ A , respectively) shortened for the same reason as for the $\mathrm{Cr}-\mathrm{X}$ bonds, and do not differ from that in I ($1.967 \AA$). On the other hand the $\mathrm{Cr}-\mathrm{Cr}$ bonds in II-IV (2.917(7), 2.971(2) and $2.967(2) \AA$, respectively) are essentially longer than that in I ($2.635 \AA$) which is evidently the result of more significant steric crowding in the ligand environment of the Cr atoms in II-IV compared with I. It is noteworthy that the geometry of the ligand environment of each chromium atom in II-IV is rather close to that found in the CpCrCl_{3}^{-}[8] or $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CrBr}_{3}{ }^{-}$[9] anions with three unpaired electrons on the three half-filled orbitals.

This observation is consistent with the fact that complexes II-IV are paramagnetic, their effective magnetic moments decrease with temperature in the range $289-77 \mathrm{~K}$ from 2.17, 2.07 and 2.245 to $0.95,0.83$ and 1.08 BM for II-IV respectively. The temperature dependence of the static magnetic susceptibility may be described in terms of the dimeric HDVV model [2] for interaction of the $\mathrm{Cr}^{\text {III }}$ ions with $3 / 2$ spins and antiferromagnetic exchange parameters of $-2 J=150,168$ and $148 \mathrm{~cm}^{-1}$ for II-IV, respectively. The decrease of the $-2 J$ value compared with $246 \mathrm{~cm}^{-1}$ for I [3] is probably the result of weakening the direct $\mathrm{Cr}-\mathrm{Cr}$ bond mentioned earlier.

Experimental

Synthesis and isolation of the complexes was carried out under pure argon in absolute solvents. $\mathrm{Cp}_{2} \mathrm{Cr}$ was synthesized by a published procedure [10]. (CpCrOR$)_{2}$ was synthesized [1] by heating a mixture of $\mathrm{Cp}_{2} \mathrm{Cr}$ and $\mathrm{t}-\mathrm{BuOH}$ in toluene under reflux, for 3 h . To this mixture was added $\mathrm{CH}_{2} \mathrm{X}_{2}$ dried by distillation over $\mathrm{P}_{2} \mathrm{O}_{5}$ without prior isolation of $(\mathrm{CpCrOR})_{2}$.

IR spectra in the region $400-4000 \mathrm{~cm}^{-1}$ were recorded with a Specord-75IR instrument in KBr pellets.

The X-ray diffraction data were collected with an automatic Syntex $\mathbf{P} 2_{1}$ diffractometer ($\mathrm{Mo}-K_{\alpha}, \theta / 2 \theta$-scan, $2 \theta_{\max }=60^{\circ}$). The structures II-IV were solved by direct methods and refined anisotropically by full-matrix least squares for III-IV; for II the Cr and Cl atoms were refined anisotropically, all the other atoms were refined isotropically. The discrepancy factors are: $R=0.133,0.088,0.051$ ($R_{\mathrm{w}}=-$, $0.053,0.040$) for $1733,1396,3039$ reflections with $I \geqslant 2 \sigma(I)$ for II-IV, respectively.

Synthesis of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{Cl}_{2}$ (II)
The red-brown solution of (CpCrOR$)_{2}$ (I) obtained from $0.52 \mathrm{~g}(2.8 \mathrm{mmol})$ of $\mathrm{Cp}_{2} \mathrm{Cr}$ in 10 ml of benzene was treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.12 \mathrm{~g}, 1.5 \mathrm{mmol})$. The dark-blue solution formed instantly, and large dark-blue needles were precipitated from solution after the addition of 3 ml of heptane and the solution had been cooled to $-5^{\circ} \mathrm{C}$. The crystals were separated from the solution by decantation, washed first with the cold benzene/heptane $(1 / 5)$ mixture, then with pentane and dried under a stream of argon. Yield $0.43 \mathrm{~g}(68 \%)$.

IR spectrum $\left(\mathrm{cm}^{-1}\right): 600 \mathrm{~s}, 760 \mathrm{~m}, 810 \mathrm{~s}, 885 \mathrm{~s}, 1005 \mathrm{~m}, 1160 \mathrm{~s}, 1350 \mathrm{~m}, 1385 \mathrm{w}$, 2935w br.

Synthesis of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{Br}_{2}$ (III)
$0.37 \mathrm{~g}(1.94 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{Br}_{2}$ was added to the red-brown solution of I obtained from $0.6 \mathrm{~g}(3.2 \mathrm{mmol})$ of $\mathrm{CP}_{2} \mathrm{Cr}$ in 20 ml of toluene. The violet solution that formed immediately was evaporated to dryness under a stream of argon at $110^{\circ} \mathrm{C}$. The residue was extracted with 30 ml of boiling benzene. The blue extract was concentrated at $60^{\circ} \mathrm{C} / 0.1$ torr to 5 ml and cooled to $+5^{\circ} \mathrm{C}$. The large, dark-blue-green needles that precipitated were separated from the solution by decantation, washed first with cold benzene/heptane $(1 / 5)$ mixture, then with pentane and dried under a stream of argon. Yield $0.57 \mathrm{~g}(67 \%)$.

IR spectrum $\left(\mathrm{cm}^{-1}\right): 610 \mathrm{~m}, 765 \mathrm{~m}, 815 \mathrm{~s}, 865 \mathrm{~m}, 1005 \mathrm{~m}, 1160 \mathrm{~s}, 1355 \mathrm{~m}, 2920 \mathrm{w}$, 2970w br, 3130w.

Synthesis of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{OCMe}_{3}\right)_{2} \mathrm{I}_{2}$ (IV)

$0.43 \mathrm{~g}(1.61 \mathrm{mmol})$ of $\mathrm{CH}_{2} \mathrm{I}_{2}$ was added to the solution of I obtained from 0.55 g (3.0 mmol) of $\mathrm{Cp}_{2} \mathrm{Cr}$ in 20 ml of toluene. The violet-green solution that formed immediately was evaporated to dryness under a stream of argon at $110^{\circ} \mathrm{C}$. The green residue was extracted by a boiling THF/hexane ($1 / 2$) mixture and concentrated to the $1 / 3$ volume in the argon flow at $70^{\circ} \mathrm{C}$. The green prisms, which precipitated upon cooling, were separated from the solution by decantation, washed with cold benzene and pentane and dried in a gentle stream of argon at room temperature. Yield $0.75 \mathrm{~g}(57 \%)$.

IR spectrum $\left(\mathrm{cm}^{-1}\right): 615 \mathrm{~m}, 760 \mathrm{~m}, 815 \mathrm{~s}, 840 \mathrm{~m}, ~ 860 \mathrm{~m}, 1010 \mathrm{~m}, 1160 \mathrm{~s}, 1235 \mathrm{w}$, $1355 \mathrm{~m}, 1375 \mathrm{~m}, 2935 \mathrm{~m}$ br.

References

[^1]
[^0]: * For part XV see ref. 11.

[^1]: 1 M.H. Chisholm, F.A. Cotton, M.W. Extine and D.C. Rideout, Inorg. Chem., 18 (1979) 120.
 2 I.H. van Vleck, The Theory of Electric and Magnetic Susceptibilities, Oxford University Press, London, 1932, Vol. 256.
 3 I.L. Eremenko, A.A. Pasynskii, Yu.V. Rakitin, O.G. Ellert, B.M. Novotortsev, V.I. Kalinnikov, V.E. Shklover and Yu.T. Struchkov, J. Organomet. Chem., 256 (1983) 291.
 4 G.A. Razuvaev, G.A. Abakumov and V.K. Cherkasov, Uspekhi Khimii, 8 (1985) 1235.
 5 B.F. Fiselmann and G.D. Stucky, J. Organomet. Chem., 137 (1977) 43.
 6 V.G. Andrianov, B.P. Biryukov and Yu.T. Struchkov, Zh. Strukt. Khim., 10 (1969) 1129.
 7 L. Pauling, The Nature of Chemical Bond, Cornell University Press, Ithaca, NY, 1960.
 8 E.O. Fischer and K. Ulm, Chem. Ber., 95 (1962) 692.
 9 A.S. Katugin, D.Ph. Thesis, M., 1987.
 10 R.B. King, Organometallic Syntheses, Academic Press Inc., New York, 1965, p. 66.
 11 A.A. Pasynskii, I.L. Eremenko, G.Sh. Gasanov, Yu.T. Struchkov and V.E. Shklover, J. Organomet. Chem., 276 (1984) 349.

